If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-16x-189=0
a = 1; b = -16; c = -189;
Δ = b2-4ac
Δ = -162-4·1·(-189)
Δ = 1012
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1012}=\sqrt{4*253}=\sqrt{4}*\sqrt{253}=2\sqrt{253}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{253}}{2*1}=\frac{16-2\sqrt{253}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{253}}{2*1}=\frac{16+2\sqrt{253}}{2} $
| 8z=4(2z=1) | | 1/4(2x-1)^2=4 | | 10/17x=9/13 | | 2g+(-5+5g)=1-g | | 8+6p=68 | | 80w=60w-10 | | 6(t−3)=2(9−2t) | | 8f-(-3)=43 | | 2.5r=105 | | 5x+6x-72=54-7x | | 8(4+5x)-8=104 | | p/2+1=2 | | -t^2-13t+40=0 | | 2x-(7x+3)=4x-39 | | 3/8(2x+16)-2=13 | | -19x-60=-11x-36 | | 15−3q+6=9 | | 10+3/4x=1/4x+13 | | -2/7-1/2x=1/3 | | 2(x−8)+2x=4(x+6)−40 | | -4x+2=11 | | 1,342z=16,104 | | A=23.14r2 | | k+14,958=18,010 | | 5h-10=2h+20 | | -8(v+7)+3v=-86 | | (5x-7)+(2x+16)=40 | | p/3-10=-8 | | -1/2y-1/3=-3/7 | | 5/2x-5=1/2+1/2x | | 7x+12x+20=20x-35 | | (-x)^2+(-x-1)^2+(-x-2)^2=194 |